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Abstract
The self-organized criticality in the two-dimensional Bak–Sneppen model is
studied from the fluctuations of the mean fitness and the jump of the minimum
sites. An ensemble having the same number of updates from the initial state is
used in the investigation. From the Gaussian distribution of the mean fitness
in the ensemble, the lattice size dependence of the ensemble-averaged fitness
is found. From the dependence, a solution to the gap equation is found and
the critical gap and an exponent are calculated. A spatial–temporal correlation
function is investigated from the jump of the minimum site.

PACS numbers: 05.40.−a, 64.60.−i

1. Introduction

Self-organized criticality (SOC) is one of the most important topics for investigating the
formation of a great variety of patterns in complex systems. Its potential applications range
from self-similar, fractal behaviour in nature [1–4], 1/f noise in quasar [5], river flow1 and
brain activity [6], to many natural and social phenomena, including earthquakes, economic
activity and biological evolution. It was suggested a decade ago that all these phenomena are
signatures of spatial–temporal complexity and can be related via scaling relations to the fractal
properties of some discontinuous evolutions (also called ‘avalanches’) of the systems. One
of the simplest SOC models is the Bak–Sneppen (BS) model [7]. In the d-dimensional BS
model, Ld sites are assigned random numbers ξj (called fitness of the sites) drawn uniformly
in (0, 1) in the initial state. In each update followed, a site with minimum fitness is determined
and the site together with its nearest 2d neighbours is given a new random number also drawn
uniformly in (0, 1). Periodic boundary conditions are adopted in the model. The maximum
of the minimum fitness before the sth update is called the gap G(s) of the system. Needless

1 See, for example, the empirical observations of H E Hurst described in [1, 3].
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to say, G(s) is a staircase function. The process of updates with a constant gap G(s) is called
an avalanche. In the large L limit there is a gap equation

dG

ds
= 1 − G

Ld〈S〉G (1)

where 〈S〉G is the mean lifetime of avalanches with a common gap G. The gap equation can
tell us how the system is driven to its critical state. This important equation is, however,
impossible to solve analytically because we do not know in advance the expression of 〈S〉G.
One additional difficulty associated with solving the gap equation is that the equation is exactly
true only in the limit L → ∞ because G(s) is not continuous for finite L.

A basic feature of the BS model is its randomness of the fitness on the sites. Because
of the randomness of the fitness on all the sites, all observations about the system are also
random. Therefore, analysing the fluctuations of quantities of the system is very important and
can give us some interesting information about the system, as we have shown in [8]. In [8], we
showed for the one-dimensional BS model that the scaled time t = s/L is a better variable for
the description of the system approaching the critical state and that important knowledge on
the evolution of the system can be obtained by analysing the fluctuations of the mean fitness
of the system in an ensemble of update processes at fixed t. The distribution of the mean
fitness in an ensemble of updates at fixed t starting from the same initial state is a Gaussian,
as can be foreseen from the central limit theorem. The peak position of the distribution has a
simple L-dependence from which the gap G can be obtained as a function of the scaled time t,
rather than the update number s, for an infinite lattice. G(t) is the solution to equation (1) for
L → ∞. Then we can get 〈S〉G and some characteristics of the BS model, such as the critical
value fC and some critical exponents. In [9], the flying of the minimum site is investigated
by introducing a directional short distance � between the minimum sites at two successive
updates. For fixed t, the distribution of � in an ensemble of updates is peaked at 0. With
the increase of t, the distribution gets more and more obviously peaked. The appearance of a
peak in the distribution of � indicates the existence of correlations between positions of the
minimum sites at successive updates. From the discussion we see that the study of fluctuations
is a new way of investigating the properties of the BS model.

In this paper we extend the discussions in [8, 9] to the two-dimensional case. We will give
the solution to the gap equation as a function of proper time t and from the solution calculate
characteristic quantities of the model. We will also study the correlations between positions of
the minimum sites at two successive updates. The organization of the paper is as follows. In
section 2, we investigate the fluctuations of the mean fitness in a two-dimensional BS model.
In section 3, we focus on the correlations between the locations of minimum sites at two
successive updates and calculate the t-dependence of a spatial–temporal correlation function.
Section 4 ponders over the method of fast simulation of the model and possible applications
of the method. Section 5 is a brief summary.

2. Fluctuations in the two-dimensional BS model

In [8], we suggested an investigation of the BS model through its event-by-event fluctuations
of the mean fitness over the lattice, fi = 1

Ld

∑Ld

j=1 ξj , at fixed scaled time (we called it the
proper time) t = s/Ld . In the d-dimensional BS model there are 2d + 1 sites involved in an
update. Thus, 2d + 1 times the proper time is the mean number of updates each site undergoes
in the s-updates of the system. The method used in [8] is quite different from the methods
used by other authors in the study of the same model. Usually, one studies the BS model in
computer simulations by counting the number of appearances of some quantities in a long
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Figure 1. Distribution of the mean fitness on two-dimensional lattices with L = 30, 50, 80, 100
and 200 at t = 2.

period of update from the initial state. In other words, an average of quantities is performed
over a whole update process. After the average, the time degree plays no role in the final
results. In our new way, we focus on the fluctuations of fi in an ensemble of updates at the
same proper time t. From the course of statistical physics we learnt that these two averages
may give different results unless the system is ergodic. In the BS model, the system is surely
not ergodic, at least not before it reaches the critical state. Therefore, the ensemble average
proposed in [8] is a novel way for the study of complex systems.

Now we can study the fluctuations of the mean fitness fi in an ensemble of updates at the
same proper time t starting from the same initial state for the two-dimensional BS model. As
in [8], a Gaussian distribution of fi can be expected from the central limit theorem

fi = fP +
ri√
L2

(2)

where fP gives the peak position and ri is a Gaussian random number with zero mean.
Computer simulations of the BS model on two-dimensional lattices of different sizes support
this expectation. In figure 1, the distribution of fi for L = 30, 50, 80, 100 and 200 is shown
for t = 2. Gaussian fits to the curves are also drawn there. Perfect agreement can be seen
there.



6000 C B Yang

0.63

0.64

0.65

0.66

0.67

0.225

0.23

0.235

0.24

0.245

0 0.025 0.05 0.075 0.1
x 10

-2

Figure 2. Lattice size dependence of the peak position and width of the Gaussian noise ri in
figure 1.

From figure 1, one can find a right shift of the peak position with the increase of lattice size
L. The width σ of the distribution also shows L-dependence. If the width of the distribution
of ri were independent of L, the L-dependence of σ would be trivially inversely proportional
to L in the two-dimensional BS model. The fitted width of the distribution of ri , which is
denoted as σL = Lσ , is shown in figure 2 together with the L-dependence of the fitted fP .
The L-dependence of fP and σL indicates that the distribution of ξj on the sites depends on
the lattice size L. In particular, we can see from figure 2 that

fP = a − b

L2
(3)

is a very good approximation. fP for other t can be calculated in the simulations through
an ensemble average of fi at the same t. We denote the result of this average as fL(t). For
different L, the behaviour of fL(t) is shown in figure 3. When t is large, small L-dependence of
fL(t) can be observed. In the limit L → ∞, fL = (1 + G)/2. Therefore, the solution G(t) to
the gap equation, equation (1), can be obtained from the simulation results with two different
lattice sizes L1 and L2 from equation (3) which is valid for any t with a and b dependent on t.

From equation (1) one can see that −ln(1 − G) is more interesting than G itself because
−ln(1 − G) as a function of t not only records how G(t) changes with time t but also contains
directly the information about the mean lifetime 〈S〉G of avalanches with gap G. The reciprocal
of the first derivative of −ln(1 −G) with respect to t is exactly 〈S〉G according to equation (1).
Therefore we plot −ln(1 − G) as a function of t in figure 4. In the figure, another curve is
drawn according to

−ln(1 − G) = A

(
1 −

(
t0

t + t0

)δ 1 + 0.35t + t2

1 + 0.55t + 0.8t2

)
(4)

with A = 0.399, t0 = 0.67 and δ = 1.429.
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Figure 3. The ensemble-averaged mean fitness fL as a function of t for different lattice sizes.
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Figure 4. −ln(1 − G) as a function of time t for an infinite lattice in the two-dimensional BS
model.

The agreement of equation (4) with the result of −ln(1−G) from the simulations is almost
perfect. This almost perfect agreement, however, does not necessarily imply that equation (4)



6002 C B Yang

0

2

4

6

-5 -4 -3 -2

Figure 5. Mean lifetime of avalanches with gap G as a function of ln(fC − G).

is the only possible parametrization of −ln(1 − G) from the simulations. In practice, many
different expressions can be used quite satisfactorily in fitting a curve, and normally, the
nonlinear fitting is a tedious and challenging task, especially when the number of parameters
is large. The expression above is obtained from eyes-guided fitting based on the following
considerations: (1) −ln(1−G) must be zero at t = 0; (2) it should approach A = −ln(1−fC) in
the limit of t → ∞, and (3) the speed of the approach is not too fast and can be taken as a power
of t. Then, A, t0 and δ can be obtained from the fitting data points with large t. The rational
expression is inserted to fit the points for medium t. Considering the almost perfect agreement
of equation (4) with the results from simulations, we can use equation (4) safely to calculate
some characteristic quantities for the two-dimensional BS model. First of all, we can easily get
the critical value fC which is the gap G at t → ∞. Thus we have fC = 1−exp(−A) = 0.329,
which agrees perfectly with the result from simulations done in [10]. Then we can see how
fast the system is driven to the critical state. From equation (4) we get fC −G ∝ t−δ for t � 1.
Thus, δ is an exponent describing the speed of the gap G approaching the critical value fC.
Finally, we can calculate the mean lifetime of avalanches with gap G, 〈S〉G, as a function of t.
Since we have determined G(t), we can show 〈S〉G as a function of G also. 〈S〉G is shown
in the log–log plot (figure 5) as a function of fC − G. The curve in the log–log plot is not a
perfect straight line. Therefore, the naive ansatz used [10] is not valid to some extent. The
slope in the small ln(fC − G) region, which is (δ + 1)/δ = 1.7, is in good agreement with the
exponent given in [10] but a little larger than that in the large ln(fC − G) region.

Now we see that our new method of studying the BS model can give the same information
about the critical state of the system as other methods. More information about the transition
is also given in this new way.

3. Correlations in the jumping of the minimum site

SOC is a process of a complex system driving itself from an uncorrelated initial state to a
highly correlated critical state. Therefore, understanding the emergence and evolution of the
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Figure 6. Distribution of jumps (δx, δy) of the minimum site in the two-dimensional BS model
with L = 100 at t = 4.

correlations in the system is crucial in studying the complex system. For the BS model very
few attempts have been made to investigate the spatial–temporal correlations in the evolution
to the critical state. Tracking a long update process, one can get in computer simulations
the probability for a minimum site to become the minimum site again for the first time after
S update and that for two minimum sites at successive updates to have a distance R. These
two distributions can give us some information about the correlations in space and time.
But they are not direct measures of the spatial–temporal correlations in the evolution of the
system in the BS model. In [9], we analysed the jumping of the minimum site in the one-
dimensional BS model and found that the distribution of the jump becomes more and more
peaked at 0 as the update proceeds. The peaked distribution of the jump is an indication of
the correlation between minimum sites at two successive updates. We defined a correlation
function to associate the width of the distribution with the correlation. In this paper, we extend
the discussion in [9] to the two-dimensional case and study the spatial–temporal correlation
in the BS model.

In the two-dimensional BS model with L2 sites, a minimum site can be specified by two
Cartesian coordinates (x, y). The jump of the minimum sites is characterized by a vector
�� = (δx, δy) as the extension of the directional shorter distance for the one-dimensional case.
For simplicity, we let the jump in both x and y directions be in the range [−L/2, L/2). At a
very early stage of evolution, each site has the same probability of being the minimum site.
Thus, the values of δx and δy in a jump can take any possible value with equal probability.
When the gap G is increased, only the sites involved in an avalanche of gap G have random
numbers less than G and may be the minimum site. Therefore, the jump of the minimum site is
bounded among the active sites. As a consequence, the distribution of the jumps becomes more
and more peaked with increasing gap G. A typical distribution of the jump of the minimum site
in a two-dimensional BS model is shown in figure 6 for t = 4 and L = 100. The distribution
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is normalized to the number of events, N = 100 000, in the ensemble of updates. There is an
extremely sharp peak. For other L and large enough t, similar distributions can be verified.

As in [9] we calculate the mean value of the jump squared, 〈 ��2〉. If there is no correlation
between the locations of the minimum sites at two successive updates, δx and δy can take any
value in [−L/2, L/2) with the same probability p( ��, t) = 1/L2. In this case 〈 ��2〉 will be

∑
��

��2p( ��, t) = 2

L

L/2−1∑
−L/2

i2 = L2 + 2

6
.

From figure 6, one can see very clearly that the distribution of �� is not uniform. To
calculate 〈 ��2〉 in our simulation, we set up an ensemble with N = 100 000 updates at the
same t from the initial state. Then

〈 ��2〉 = 1

N

N∑
i=1

��i
2 (5)

in which ��i is the jump at time t for the ith simulation event in the ensemble. The value
of 〈 ��2〉 in the simulation is less than that for the case without correlation. The larger the
discrepancy, the stronger the correlation. We can define a correlation function in the same
way as in [9]

C(t) = 1 − 6〈 ��2〉
L2 + 2

. (6)

This correlation function is spatial–temporal because it involves a spatial jump of minimum
site between two successive temporal updates. The calculated correlation function is shown
in figure 7 as a function of t in the range (0, 5) from simulations with a different lattice size L.
At large t, the finite-size effect plays a role in the correlation function. For very large lattice,
the correlation function can be parametrized as

C(t) = 1 −
(

t0

t0 + t

)δ 1 + 1.1t + 0.32t2

1 + 0.35t + 0.65t2
(7)

with t0 = 0.215 and δ = 1.49. δ indicates how fast the correlation function reaches its
saturated value at large t. When t 	 t0 the correlation is very weak but the correlation
function increases linearly with time t. When t � t0 the correlation is strong and the
correlation function increases very slowly. Therefore, t0 is regarded as a turning point from
weak to strong correlation. Across the point, the behaviour of the correlation function is
changed. We can use the value of t0 to mark when the system is near the critical state.

4. Fast simulation of the Bak–Sneppen model

Because of the intrinsic complexity of SOC, no simple mathematical formula can be employed
to describe the behaviour. Therefore, computer simulation is at present the main tool for the
investigation of properties of complex systems. In many cases, the use of discrete space
and time is necessary at the current computation level. With the increase in the size of the
discrete spatial–temporal lattice, the simulation will become slower and slower. This hampers
the study of complex systems. Thus, a very important practical topic is how to improve the
simulation speed.

Once the maximum ‘proper time’ tmax is fixed in the simulations, the number of update
steps Nmax = Ldtmax is proportional to the lattice size Ld . It is clear that the main computation
in each step is to find the minimum site. If we compare the fitness on all the sites directly,
Ld − 1 
 Ld comparisons are needed. Therefore, the time consuming process of simulation
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Figure 7. Behaviour of the correlation function C(t) for t in (0, 5) from simulations of the
two-dimensional BS model with different lattice size L.

of the BS model is proportional to L2d . In this section, we try to introduce a new method to
quicken the simulation of the BS model. We will show below that the time consuming process
will become proportional to Ld for fixed tmax.

The only way to quicken the simulation is to reduce the computation in finding the
minimum site when tmax is fixed. In our problem, an array of a list can be introduced for this
purpose. In each element of the list array, the positions of sites with fitness in a certain interval
can be stored. In simulating the BS model one can divide the total interval of fitness (0, 1)
into NL parts. Then a list array of size NL should be used, and the ith (i = 0, 1, . . . , NL − 1)

list contains the positions of sites with fitness in the interval [i/NL, (i + 1)/NL). One can
see that the minimum fitness can be found in the j th list when all i lists with i < j are, by
chance, empty. If there are Nj elements in the list, Nj − 1 comparisons are enough to find the
minimum. In our simulation we choose NL = Ld/50. Thus, on average, only 50 comparisons
are needed to find the minimum site, no matter how big a lattice is used. The list array is filled
during the initialization of the random fitness on the sites. When a site undergoes an update
of random fitness, a new rank i for the new fitness is calculated. If the new rank is the same
as the one the fitness is in before the update, no change in the list is necessary. Otherwise, a
node is deleted from the old list and added to the new list. With updating, fewer and fewer
fitnesses lie below a certain gap G, so that the procedure of finding the update centre may
become faster and faster. This is an advantage of using list array. Now the step needed in
the simulation of the BS model is proportional only to the update steps for fixed tmax. By the
way, the method using list array can be easily coded with the C++ programming language
(see [11, 12]). We compared simulations of the BS model with and without list array for a
two-dimensional lattice of L = 100 in each direction and found that the new method is about
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100 times faster. If binary search trees are used for the non-empty lists with lowest ranks, the
update process can be even faster.

The method discussed above is applicable to some other lattice models (such as a self-
organized growth model described in [13] for the quenched Herring–Mullins equation). In
fact, there exists a whole class of models in which the rules consist of selecting the site with
the extremal (global maximum or minimum) value of some variable and then changing the
values of the variable on the site and its nearest neighbours according to some stochastic rule.
These models, referred to as extremal models, were extensively studied (for a review, see
[10]). They were employed to describe a variety of physical phenomena such as fluid invasion
in disordered porous media [14], low-temperature creep [15], earthquake dynamics [16], etc.

It is more interesting to note that a similar method can be used in the sorting processes.
For the basic task of sorting N elements, the best algorithms require on the order of several
times N log2N operations. For N < 50, roughly, Shell’s method is better, but it goes as N3/2

in the worst case. For large N, Quicksort is, on average, the fastest known sorting algorithm.
But in the worst case it can be a N2 method! Another fast sorting method is the Heapsort. See
[17] for a more detailed discussion.

Selection is sorting’s austere sister. The most common use of selection is in the statistical
characterization of a set of data. The operation count scales as N. By using a list array the
problem can be converted into a N0 one. This method is more efficient when more than one
median value needs to be selected.

5. Summary

Using an ensemble of update processes starting from the initial state, we study the fluctuations
of the mean fitness in the ensemble of updates at the same proper time t and the correlation
between the locations of two minimum sites at successive updates. We found the lattice size
dependence of the ensemble-averaged fitness and got a solution to the gap equation. Some
characteristic quantities are calculated from the solution. From the jumping of the minimum
site a spatial–temporal correlation function is defined and calculated. A method for a fast
simulation of the BS model together with its possible applications is briefly discussed.
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